LONGEST CYCLES IN POLYHEDRAL GRAPHS

BY

HANSJOACHIM WALTHER

Department of Mathematics University of Technology Ilmenau, 0-630 Ilmenau, Germany

ABSTRACT

A sequence of polyhedral graphs G_n is constructed, having only 3-valent and 8-valent vertices and having only 3-gons and 8-gons as faces with the property that the shortness exponent of the sequence as well as the shortness exponent of the sequence of duals is smaller than one.

We consider **polyhedral graphs**, that is graphs which are planar and 3-connected. For a graph G = G(V, E) let v(G), f(G) and c(G) be the number of vertices, the number of elementary faces and the circumference (the number of vertices of a longest cycle) of G, resp. A graph G is called **hamiltonian** if c(G) = v(G). The **valency** v(X) of a vertex $X \in V(G)$ is the number of edges incident to X. The **length** l(F) of an elementary face F is the number of edges bordering F. A face F with l(F) = i is called an i-gon. $v_i(G)$ and $f_i(G)$ are the number of vertices of G of valency i and the number of i-gons in G, resp.

Let Γ be a family of graphs. The shortness exponent $\sigma(\Gamma)$ of Γ is defined [2] by

$$\sigma(\Gamma) := \liminf_{\mathbf{G} \in \Gamma} \frac{\log c(\mathbf{G})}{\log v(\mathbf{G})}.$$

Several families of polyhedral graphs with a shortness exponent smaller than one are known [2,3,4,5,6]. Moreover, let Γ^* be the family of polyhedral graphs G^* dual to $G \in \Gamma$.

Several families Γ are known with $\sigma(\Gamma) < 1$ and $\sigma(\Gamma^*) < 1$.

Received April 14, 1992 and in revised form September 7, 1992

In order to show $\sigma(\Gamma) < 1$ there are generally constructed special sequences $\{G_n\} \subset \Gamma$ with the property

$$\lim_{n\to\infty}\frac{\log c(\mathbf{G}_n)}{\log v(\mathbf{G}_n)}<1.$$

In case that $\sigma(\Gamma^*) < 1$ holds, too, in general the sequence $\{G_n^*\} \subset \Gamma^*$ with G_n^* dual to G_n does not fulfill the inequality

$$\lim_{n\to\infty}\frac{\log c(\mathbf{G}_n^*)}{\log v(\mathbf{G}_n^*)}<1.$$

Moreover, the existence of this limit is generally not guaranteed.

In the following, we consider sequences $\{G_n\}$ of polyhedral graphs for which

$$\lim_{n\to\infty}\frac{\log c(\mathbf{G}_n)}{\log v(\mathbf{G}_n)}$$

and the corresponding limit for the sequence of the duals G_n^* of G_n exist. We will denote these limits by $\sigma\{G_n\}$ and $\sigma\{G_n^*\}$, resp.

We denote by $\Gamma(p_1, p_2, \ldots, p_r; q_1, q_2, \ldots, q_s)$ with $p_1 < p_2 < \cdots < p_r$ and $q_1 < q_2 < \cdots < q_s$ the family of polyhedral graphs **G** with the following property: for any vertex $X \in V(\mathbf{G})$ there is an integer $k \in \{1, 2, \ldots, r\}$ with $v(X) = p_k$ and for any elementary face F of **G** there is an integer $j \in \{1, 2, \ldots, s\}$ with $l(F) = q_j$, and vice versa: To any p_k there is a vertex $X \in V(\mathbf{G})$ with $v(X) = p_k$ and to any q_l there is a face F with $l(F) = q_l$.

Obviously, if $G \in \Gamma(p_1, \ldots, p_r; q_1, \ldots, q_s)$, then the dual G^* of G is in $\Gamma(q_1, \ldots, q_s; p_1, \ldots, p_r)$. We only consider families Γ of graphs with restricted valencies and restricted lengths of the elementary faces.

Definition: A class $\Gamma = \Gamma(p_1, \ldots, p_r; q_1, \ldots, q_s)$ of polyhedral graphs is called **minishort** if there exists a sequence $\{G_n\} \subset \Gamma$ such that $\sigma\{G_n\} < 1$ and $\sigma\{G_n^*\} < 1$.

Trivially, Γ is minishort iff Γ^* is minishort.

For $\Gamma = \Gamma(p_1, p_2, \dots, p_r; q_1, q_2, \dots, q_s)$ let us shorten

$$b(\Gamma) := |\{p_1, p_2, \dots, p_r, q_1, q_2, \dots, q_s\}|$$

and

$$d(\Gamma) := r + s$$
.

Obviously, $b(\Gamma) = b(\Gamma^*)$ and $d(\Gamma) = d(\Gamma^*)$.

PROBLEM: What is the smallest integer b such that there exists a minishort family Γ with $b(\Gamma) = b$?

It is easy to see that $b \geq 2$ because there exists only one family Γ of polyhedral graphs with $b(\Gamma) = 1$ namely, $\Gamma(3;3)$ consisting of exactly one graph—the (*Platonic solid*) tetrahedron.

In case of $b(\Gamma) = 2$ we have to distinguish three cases:

- 1. $d(\Gamma)=2$
 - $\Gamma = \Gamma(p;q), \quad p \neq q.$

There exist exactly 4 families Γ $(p = 3, q \in \{4,5\}; p \in \{4,5\}, q = 3);$ each of them consists of exactly one element, namely one of the remaining Platonic solids. Each Platonic solid is hamiltonian.

- 2. $d(\Gamma) = 3$
 - $\Gamma = \Gamma(p,q;p), \Longrightarrow p = 3$. In 1991 M. Tkáč [6] has shown that

$$\liminf_{\mathbf{G} \in \Gamma(3;3,q)} \frac{c(\mathbf{G})}{v(\mathbf{G})} < 1 \quad (7 \le q \le 10).$$

For q > 10 it is easy to see that $\Gamma(3; 3, q)$ is empty. If q < 7 the shortness exponent equals 1 [1].

- $\Gamma = \Gamma(p,q;q), \Longrightarrow p = 3, q \in \{4,5\}$. In 1972 G.Ewald [1] has shown that $\sigma(\Gamma(3,4;3,4)) = 1$, that means $\Gamma(3,4;4)$ is not minishort. In case of $\Gamma(3,5;5)$ we have no information about minishortness.
- 3. $d(\Gamma) = 4$ For the family $\Gamma = \Gamma(p, q; p, q), p = 3$ holds.

We can prove the following, which shows that the minimum b as defined above is two.

THEOREM: The family $\Gamma = \Gamma(3,8;3,8)$ is minishort.

Proof of the Theorem: We construct a suitable sequence $\{G_n\}$ in the following way:

G₁ is the polyhedral graph of Fig. 1. It is non hamiltonian because each of the 8 (white) vertices of valency 3 has only neighbours of valency 8(black vertices) and there are only 6 black vertices.

Figure 1

Figure 2

Figure 4

The dual G_1^* of G_1 is drawn in Fig. 2. Cutting off the vertex P of G_1 we obtain the graph W (see Fig. 3) and its quasidual W^* (see Fig. 4. We obtain the real dual of W by inserting a further vertex incident with the three halfedges u, v, w). $W^*[6, 6, 6]$ means that the number of vertices between any two of the three halfedges u, v, w along the border of W^* equals 6, 6, 6, resp.

If we replace in **W** each white vertex by a copy of W^* , we obtain the graph **H** of Fig. 5. The quasidual graph H^* of **H** can be constructed by replacing each elementary triangle Δ of W^* by a copy of **W** identifying the three edges of Δ with the three edges x, y, z (see Fig. 6).

With the exception of the three vertices X, Y, Z in **W** and **H** all graphs and quasigraphs constructed up to now have only 3-valent and 8-valent vertices, and the length of any finite elementary face is 3 or 8.

 G_{m+1} arises by replacing each vertex of valency 3 in G_m by a copy of H^* .

It is not difficult to see that G_{m+1}^* arises by replacing each elementary triangle Δ of G_m^* by a copy of H identifying the three edges of Δ with the three edges x, y, z of H.

Now, we have to count the numbers $v(\mathbf{G}_m)$ and $v(\mathbf{G}_m^*)$ of vertices of \mathbf{G}_m and \mathbf{G}_m^* , resp., as well as the numbers $c(\mathbf{G}_m)$ and $c(\mathbf{G}_m^*)$ of vertices contained in a longest cycle of \mathbf{G}_m and \mathbf{G}_m^* , resp. Let $c_i(\mathbf{G})$ be the maximum number of *i*-valent vertices contained in a longest cycle of \mathbf{G} .

As shown in Fig. 1, we have

$$v_3(\mathbf{G}_1) = 8$$
, $v_8(\mathbf{G}_1) = 6$, $f_3(\mathbf{G}_1) = 24$,
 $c_3(\mathbf{G}_1) = c_8(\mathbf{G}_1) = 6$, $c(\mathbf{G}_1) = c_3(\mathbf{G}_1) + c_8(\mathbf{G}_1) = 12$.

In accordance with the construction given above, we get

$$v_{3}(\mathbf{G}_{m+1}) = 49 \cdot v_{3}(\mathbf{G}_{m}) = \cdots = 8 \cdot 49^{m},$$

$$v_{8}(\mathbf{G}_{m+1}) = v_{8}(\mathbf{G}_{m}) + 42 \cdot v_{3}(\mathbf{G}_{m}) = \cdots = 7 \cdot 49^{m} - 1,$$

$$f_{3}(\mathbf{G}_{m+1}) = 3 \cdot 49 \cdot v_{3}(\mathbf{G}_{m}) = 24 \cdot 49^{m},$$

$$f_{8}(\mathbf{G}_{m+1}) = f_{8}(\mathbf{G}_{m}) + 6 \cdot v_{3}(\mathbf{G}_{m}) = \cdots = 49^{m} - 1,$$

$$c_{3}(\mathbf{G}_{m+1}) = 7 \cdot 5 \cdot c_{3}(\mathbf{G}_{m}) = \cdots = c_{3}(\mathbf{G}_{1}) \cdot 35^{m} = 6 \cdot 35^{m}$$

because a longest path through W (Fig. 3) connecting any two of the three marginal vertices X, Y, Z contains 5 of the 7 vertices of valency 3.

Moreover, a longest path through \mathbf{H}^* connecting any two of the three halfedges u, v, w contains all the 6.7 (black) vertices of valency 8 and 7.5 vertices of valency 3, that means

$$c_8(\mathbf{G}_{m+1}) = c_8(\mathbf{G}_m) + 6 \cdot 7 \cdot c_3(\mathbf{G}_m) = c_8(\mathbf{G}_1) + 6 \cdot 42 \cdot \frac{35^m - 1}{35 - 1} < 8 \cdot 35^m$$
$$\implies c(\mathbf{G}_{m+1}) = c_8(\mathbf{G}_{m+1}) + c_3(\mathbf{G}_{m+1}) < 14 \cdot 35^m.$$

We obtain

$$\sigma\{\mathbf{G}_n\} = \lim_{m \to \infty} \frac{\log c(\mathbf{G}_m)}{\log v(\mathbf{G}_m)} \le \dots \le \frac{\log 35}{\log 49}.$$

What about the sequence $\{G_n^*\}$ of duals of G_n ?

Let C_m^* be a longest cycle of G_m^* and let Δ^* be any elementary triangle in G_m^* with the property that all of its three vertices are contained in C_m^* . We can blow up C_m^* to a C_{m+1}^* of G_{m+1}^* in the following way:

All the 6 vertices of valency 8 of **H** inserted in Δ^* are contained in C_{m+1}^* and $5 \cdot 21$ of the $7 \cdot 21$ vertices of valency 3 are contained in C_{m+1}^* (each vertex of valency 3 is contained in exactly one elementary triangle) and, if an 8-valent vertex of G_m^* is contained in C_m^* , then it occurs in C_{m+1}^* , too. We obtain

$$c_3(\mathbf{G}_{m+1}^*) = \frac{1}{3} \cdot 5 \cdot 21 \cdot c_3(\mathbf{G}_m^*) = \dots = 24 \cdot 35^m,$$

$$c_8(\mathbf{G}_{m+1}^*) = c_8(\mathbf{G}_m^*) + \frac{1}{3} \cdot 6 \cdot c_3(\mathbf{G}_m^*) = c_8(\mathbf{G}_m^*) + 2 \cdot 24 \cdot 35^{m-1} = \dots = \frac{48}{34} (35^m - 1),$$

$$c(\mathbf{G}_{m+1}^*) = c_3(\mathbf{G}_{m+1}^*) + c_8(\mathbf{G}_{m+1}^*) < \dots < 26 \cdot 35^m,$$

and finally

$$\sigma\{\mathbf{G}_n^*\} \le \lim_{m \to \infty} \frac{\log(26 \cdot 35^m)}{\log(23 \cdot 49^m)} = \frac{\log 35}{\log 49}.$$

This completes the proof of the Theorem.

Figure 7

In an analogous way one can prove that $\Gamma(3, 10; 3, 10)$ is minishort starting with the well-known non-hamiltonian graph of Fig. 7 and its dual.

We wish to raise the following conjectures and an open problem:

1. Conjecture: $\Gamma(3,5;5)$ is not minishort.

2. Conjecture: $\Gamma(3,q;3)$ is not minishort.

3. What about the minishortness of the families

$$\Gamma(3,q;3,q), \quad q=7,9,11,12,\ldots$$
?

After submitting this paper P.J. Owens has constructed a sequence $\{P_n\} \subset \Gamma(3,8;3,8)$ of selfdual polyhedral graphs with a shortness exponent smaller one (private communication of S. Jendrol).

References

- [1] G. Ewald, Shortness exponents of families of graphs, Israel J. Math. 16 (1973), 53-61.
- [2] B. Grünbaum and H. Walther, Shortness exponents of families of graphs, J. Comb. Theory (A) 14 (1973), 364-385.
- [3] B. Grünbaum and T.S. Motzkin, Longest simple paths in polyhedral graphs, J. London Math. Soc. 37 (1962), 152-160.
- [4] J. Harant, Über den Shortness Exponent regulärer Polyedergraphen mit genau zwei Typen von Elementarflächen, Thesis A, Ilmenau, Institute of Technology.
- [5] P.J. Owens, Regular planar graphs with faces of only two types and shortness parameters, J. Graph Theory 8 (1984), 253-275.
- [6] M. Tkáč, Note on shortness coefficients of simple 3-polytopal graphs with only one type of faces besides triangles., Discr. Math. (to appear).