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ABSTRACT 

A sequence of polyhedral graphs G= is constructed, having only 3-valent 

and 8-valent vertices and having only 3-gons and 8-gons as faces with 

the property that the shortness exponent of the sequence as well as the 

shortness exponent of the sequence of duals is smaller than one. 

We consider po lyhedra l  graphs,  that is graphs which are planar and 3- 

connected. For a graph G = G(V, E) let v(G), f (G)  and c(G) be the number 

of vertices, the number of elementary faces and the c i rcumference (the number 

of vertices of a longest cycle) of G, resp. A graph G is called hamil tonian if 

c(G) = v(G). The valency v(X) of a vertex X E V(G) is tile number of edges 

incident to X. The length l(F) of ml elementary face F is the number of edges 

bordering F. A face F with l ( F )  = i is called an i-gon, v~(G) and f~(G) are the 

number of vertices of G of valency i and the number of i-gons in G, resp. 

Let r be a family of graphs. The shor tness  exponent  a ( r )  of I' is defined 

[2] by 

a(F) := liminf logc(V) 
Ger logv(G)" 

Several families of polyhedral graphs with a shortness exponent smaller than 

one are known [2,3,4,5,6]. Moreover, let F* be the family of polyhedral graphs 

G* dual to G E r .  

Several families r are known with a ( r )  < 1 and a(r*)  < 1. 
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In order to show a ( r )  < 1 there are generally constructed special sequences 

(G ,}  C r with the property 

lim logc(G,)  < 1. 
.- .oo log v ( G . )  

In case that a(r*)  < 1 holds, too, in general the sequence {G*} C r* with 

G* dual to Gn does  not  fulfill the inequality 

lim logc(G*) < 1. 
n--'~ logv(G*) 

Moreover, the existence of this limit is generally not guaxanteed. 

In the following, we consider sequences {G,} of polyhedral graphs for which 

,. log c(G.)  
~ m  log v(Gn-----'--~ 

and the corresponding limit for the sequence of the duals G** of Gn exist. We 

will denote these limits by a{G,}  and a{G*}, resp. 

We denote by r (p~ ,P2 , . . . , p r ;q l , q2 , . . . , q , )  with Pl < P2 < "'" < Pr and 

ql < q2 < "'" < q, the family of polyhedral graphs G with the following property: 

for any vertex X e V(G) there is an integer k E {1,2,. . .  ,r} with v (X)  = pk 

and for any elementary face F of G there is an integer j E {1,2, . . . , s}  with 

l(F) = qi, and vice versa: To any pk there is a vertex X E V(G) with v(X)  = pk 

and to any ql there is a face F with l(F) = qz. 
Obviously, if G E r ( p l , . . . , p r ; q l , . . . , q , ) ,  then the dual G* of G is in 

r (q l , . . .  ,qo;pl , . . .  ,pr). We only consider families r of graphs with restricted 

valencies and restricted lengths of the elementary faces. 

Definition: A class r = r (p l , . . .  ,p~; ql , . . . ,q°)  of polyhedral graphs is called 

minishor t  if there exists a sequence {Gn} C r such that a{G,,} < 1 and 

. {G~.}  < 1 .  m 

Trivially, r is minishort iff r* is minishort. 

For r = r (p l ,p2 , . . .  ,Pr; ql, q2 , . . . ,  q°) let us shorten 

and 

b(F) := I {p l ,P2 , . . . ,p , ' ,q , ,q~ , . . .  ,qs}[ 

d( r )  := r + s. 

Obviously, b(r) = b(r')  and d(r) = ~(r*). 
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PROBLEM: What is the smallest integer b such that there exists a mlnlshort 

family r with b(F) = b? 

It is easy to see that b >__ 2 because there exists only one family r of polyhe- 

dral graphs with b(r) = 1 namely, r(3; 3) consisting of exactly one graph-- the 

(Platonic solid) t e t r a h e d r o n .  

In case of b(r) = 2 we have to distinguish three cases: 

1. d( r )  = 2 

r = r(p;q), p # q .  

There exist exactly 4 families r (p = 3, q E {4,5}; p E {4,5}, q = 3); 

each of them consists of exactly one element, namely one of the remaining 

Platonic solids. Each Platonic solid is hanfiltonian. 

2. d (r )  = 3 

• F = r(p,q;p),==~ p = 3. In 1991 M. Tk~.~ [6] has shown that 

lim inf c(G) Ger(3;3,q) v -~  < 1 (7 _< q _< I0). 

For q > I0 it is easy to see that 1"(3; 3, q) is empty. 

If q < 7 the shortness exponent equals 1 [1]. 

• r = r ( p ,  a; q), ~ p = 3, q e {4, 5}. In 1972 G.Ewald [1] has shown 

that a( r (3 ,  4; 3, 4)) = 1, that means F(3, 4; 4) is not minishort. 

In case of F(3, 5; 5) we have no information about minishortness. 

3. d( r )  = 4 

For the family F = r'(p, q; p, q), p = 3 holds. 

We can prove the following, which shows that the minimmn b as defined above 

is two .  

THEOREM: The family r = r(3, 8; 3, 8) is minishort. 

Proof of the Theorem: We construct a suitable sequence {G,,} in the following 

way: 

(]1 is the polyhedral graph of Fig. 1. It is non hanliltonian because each of the 

8 (white) vertices of valency 3 has only neighbours of valency 8(black vertices) 

and there are only 6 black vertices. 
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Gi = G1(3,8;3,8) 

t'3 = 8, v8 = 6 

f3 = 24,f8 = 0 

c3 -~ 6, c8 = 6 

c = 1 2  

Y k" 
z 

Figure  1 

G~ = G~(3,8;3.8) / ~  

c 

Figure  2 
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Y X 
Z 

Figure 3 

U 

Figure 4 



208 H. WALTHER lsr. J. Math. 

Figure 5 

The dual G~ of G1 is drawn in Fig. 2. Cutting off the vertex P of G1 we 

obtain the graph W (see Fig. 3) and its quasidual  W*(see Fig. 4. We obtain 

the real dual of W by inserting a further vertex incident with the three halfedges 

u, v, w). W*[6, 6, 6] means that the number of vertices between any two of the 

three halfedges u, v, w along the border of W* equals 6,6,6, resp. 

If we replace in W each white vertex by a copy of W*, we obtain the graph 

H of Fig. 5. The quasidual graph H* of H can be constructed by replacing each 

elementary triangle A of W* by a copy of W identifying the three edges of A 

with the three edges x, y, z (see Fig. 6). 

With the exception of the three vertices X, Y, Z in W and H all graphs and 

quasigraphs constructed up to now have only 3-valent and 8-valent vertices, and 

the length of any finite elementary face is 3 or 8. 

Gm+l arises by replacing each vertex of valency 3 in Gm by a copy of H*. 



H" = H'[6, 6, 6] 

nz =7"7=49,  ns = 6 .7=42  

f3 = 21-7 = 147, fs = 3 

cz = 7 . 5  = 35, cs = 7".6 = 42 

c =  77 
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F i g u r e  6 

It is not difficult to see that G * + I  arises by replacing each elementary triangle 

A of G *  by a copy of H identifying the three edges of A with the three edges 

x , y , z  of H.  

Now, we have to count the numbers v(G,n) and v(G,*,) of vertices of Gm and 

G ~ ,  resp., as well as the numbers c(Gm) and c ( G ~ )  of vertices contained in 

a longest cycle of G,n and G ~ ,  resp. Let ci(G) be the maximum number of 

i-valent vertices contained in a longest cycle of G. 

As shown in Fig. 1, we have 

v3(G1) = S, vs(Gl)  = 6, f3(G1) = 24, 

c3(G1) = cs(G1) = 6, c (Gl)  = ca(G1) + cs(Gl)  = 12. 
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In accordance with the construction given above, we get 

v3(G"+, )  = 49. v3(G")  . . . . .  S. 49",  

vs(Gm+l) = vs (V")  + 42. v3(Gm) . . . . .  7 "  49" - 1, 

f 3 ( V " + l )  = 3 . 4 9 .  v 3 ( V m )  = 24.49 m, 

fs(Gm+l)  = f s ( G " )  + 6. v3(G")  . . . . .  49"  - 1, 

c3(G,n+l) = 7 . 5 .  c3(G")  . . . . .  ca(G,) .  35 m = 6 . 3 5 "  

because a longest path through W (Fig. 3) connecting aaly two of the three 

marginal vertices X, Y, g contains 5 of the 7 vertices of valency 3. 

Moreover, a longest path through H* connecting any two of the three halfedges 

u, v, w contains all the 6.7 (black) vertices of valency 8 and 7- 5 vertices of valency 

3, that  means 

c~(G"+,)  = c~(G.,)  + 6 . 7 .  ca(G.,)  = cs(G,)  + 6 . 4 2 .  - -  

We obtain 

35" - 1 
3 5 -  1 

c(Gm+,) = c s (G"+ , )  + c3(Gm+,) < 14.35 m. 

< 8 . 3 5 "  

This completes the proof of the Theorem. 

and finally 
a{G~} < lim log(26.35")  _ log35 

- "-.oo log(23 • 49")  log49" 

| 

a<Gn} = lim logc(G")  log35 
m--.oo l ogv (G" )  < " "  < - - log 49" 

What  about the sequence {G*} of duals of G , ?  

Let C,~ be a longest cycle of G*, and let A* be any elementary triangle in G ~  

with the property that all of its three vertices are contained in C,~,. We can b l o w  

up C,~ to a C*+1 of G~+ 1 in the following way: 

All the 6 vertices of valency 8 of H inserted in A* are contained in C,~+1 and 

5- 21 of the 7- 21 vertices of valency 3 axe contained in C,~+1 (each vertex of 

valency 3 is contained in exactly one elementary triangle) and, if an 8-valent 

vertex of G ~  is contained in Cm, then it occurs in C~+1, too. We obtain 

* 1 c3(Gm+l) -- ~" 5" 21" c3(G*n) . . . . .  24.35 m, 

cs(G~n+,) = c s ( G ~ ) +  1~. 6 • c3t~m)rO*~ = cs(G~) + 2"24"35"-1 = "-. = ~,vv4s ¢-a-~m - 1), 

c(GT.+,) = ca(GT.+,) + c8(G7~+,) < - - -  < 26 .3S% 
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Figm'e 7 

In an analogous way one can prove that r(3,10; 3,10) is minishort starting 

with the well-known non-hamiltonian graph of Fig. 7 and its dual. 

We wish to raise the following conjectures and an open prolflem: 

1. CONJECTURE: r(3,5; 5) is not  minishort .  

2. CONJECTURE: r (3 ,  q; 3) is not minishort. 

3. What about the minishortness of the families 

r (3 ,  q; 3, q), q = 7 , 9 , 1 1 , 1 2 , . . . ?  

After submitting this paper P.J. Owens has constructed a sequence {Pn} C 

r(3,  8; 3, 8) of selfdual polyhedral graphs with a shortness exponent smaller one 

(private communication of S. Jendrol). 
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